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A Case Study in Structural Modeling 

Abstract: This report is one in a series of Software Engineering Institute (SEI) 
case studies on software architecture. It describes structural modeling, a 
technique for creating software architectures based on a small set of design 
elements called structural types. Structural modeling resulted from the efforts 
of the Air Force Aeronautical Systems Command (ASC/YW) and has been 
used by Air Force contractors since the late 1980s to design large-scale, high- 
fidelity aircrew trainer simulation software. This report examines the changes, 
resulting from the use of structural modeling, to the trainer's software 
architecture and to the development methods used. 

1       Introduction 

1.1   Purpose of the Case Study 
Each SEI case study in software architecture documents a specific organization's process for 
selecting, evaluating, and using a software architecture.1 The goal of these studies is to allow 
the reader to compare the different organizations, and the software architectures adopted. Is- 
sues addressed include 

• How is the software architecture used to develop a software system? 

• What are the benefits of the approach taken? 

• What are the associated costs and difficulties? 

This report focuses on a joint effort, led by the U.S. Air Force Aeronautical Systems Command 
(ASC/YW) and supported by Air Force contractors and the Software Engineering Institute 
(SEI), that resulted in structural modeling. ASC/YW is the Air Force organization responsible 
for the acquisition of aircrew trainers, including the selection of the contractors to design and 
build a trainer, coordination of the trainer's construction, and selection of the trainer's mainte- 
nance contractor. 

The initial goal of the joint effort was to reduce the complexity of producing aircrew trainer sim- 
ulation software; particularly complexity as encountered during software integration. Because 
structural modeling has been used across multiple aircrew trainers, the lessons learned from 
its use have strong implications for the creation of product lines of aircrew trainers. 

This paper describes structural modeling, the aircrew trainer simulation software that was de- 
signed using structural modeling, the software architecture of the trainers, the technologies 

1 •    The other currently published case study in this series is Case Study in Successful Product Line Development 
[Brownsword 96]. 
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used to develop the trainers, and the organizational, management, and business issues relat- 
ed to structural modeling. 

The intended audience for this case study includes those interested in software development, 
particularly change agents, technology champions and sponsors, as well as program and ac- 
quisition managers from government and industry. We assume that the reader has no previ- 
ous in-depth knowledge of simulation software, trainers, software architecture, or architecture- 
based development; these terms will be defined and discussed briefly. 

1.2 Motivation 
The U. S. Air Force has a long history of using aircrew trainers as an integral part of their air- 
crew training programs. These trainers are expensive to build. For example, the B-2 trainer 
contains over 1.7 million lines of Ada simulation code. However, the benefits of trainers justify 
the expense. Aircrew trainers reduce training costs, improve safety, support security, and pro- 
vide flexibility and convenience [Rolfe 86]. 

Modern aircraft have become increasingly complex and dynamic; an aircraft is dynamic if its 
systems (e.g., weapons and radar) are subject to frequent change. Aircrew trainer simulation 
software based on the traditional data-driven approach have become increasingly difficult to 
integrate and maintain. (A description of the data-driven approach is contained in Chapter 3.) 
Structural modeling ultimately addressed both the technical and developmental problems as- 
sociated with the earlier efforts to develop trainer simulation software.2 

Over the past decade the U. S. Air Force has embraced the use of structural modeling, funded 
its use on several programs, and ultimately sponsored the creation of a guidebook on struc- 
tural modeling [ASCYW 94]. 

1.3 Information Gathering 
The information presented in this report was gathered from on-site visits and phone conver- 
sations with aircrew trainer contractors, interviews with SEI employees involved with the struc- 
tural modeling effort, and publications related to structural modeling. 

Structural modeling has been in use for over a decade, during which time the technology has matured. The 
notion of structural modeling has expanded from a method for constructing a software architecture into an ar- 
chitecture-based development method. This report presents the expanded view. 
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The contractor organizations that we contacted include 

• Hughes Training, Inc., Link Division (B-2 Weapons System Trainer) 

• Loral (C130 Special Operations Forces Trainer) 

• Lockheed Martin (F-22 Trainer) 

1.4   Report Organization 
The structure of this report is as follows: 

• In Chapter 2, we discuss software systems as a solution to a user-defined 
problem, and define and discuss software architecture and architecture- 
based development. 

• In Chapter 3, we discuss aircrew trainer simulation software. We describe 
aircrew trainers in general and the required simulation software in particular, 
and describe the data-driven software architecture and its limitations. 

• In Chapter 4, we explain structural modeling as a response to the limitations 
of the data-driven architecture. 

• In Chapter 5, we present the organizational factors related to the use of 
structural modeling in aircrew trainers. 

• Finally, in Chapter 6 we present our analysis of structural modeling based on 
the gathered information. 
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2      Architecture-Based Development 

2.1 Introduction 
A software system is a solution to a user problem. Software design methods typically describe 
the user problem in terms of the restrictions on a potential solution (i.e., by requirements, 
goals, and constraints). Generally, the requirements describe the needed features (i.e., func- 
tionality) of the software system; the goals specify the required quality attributes (e.g., modifi- 
ability) of the software system; and the constraints enumerate the limitations (e.g., cost and 
schedule) placed on the software system [Stikeleather 96].3 

"A successful software system is conceived, created, and maintained by the coordinated ef- 
forts of the stakeholders of that system: the customers, users, project managers, architects, 
coders, testers, etc." [Clements 96]. Each of these stakeholders has a unique perspective on 
the software system. Together, the requirements, goals, and constraints unify the stakehold- 
ers' views into a precise statement of the original user problem. 

Just as the requirements, goals, and constraints form a representation of a particular user 
problem, a software architecture is a representation of a particular solution to that problem. 
The software architecture can provide the common focus for the successful development and 
maintenance of a large, long-lived software system. Software development based on the ar- 
chitecture is called architecture-based development. In this chapter we will define and discuss 
the notions of software architecture and architecture-based development. 

2.2 Software Architecture 
No single definition of a software architecture is universally accepted: many definitions exist. 
[Clements 96]. We have adopted the following definition of a software architecture from Garlan 
[Garlan 95]: 

... the components of a program/system, their interrelationships, and principles 
and guidelines governing their design and evolution over time. 

In this definition, the components of a program/system refer to how the functionality of the soft- 
ware system is assigned to the individual software components; issues include modularity and 
the granularity of the software components. The interrelationships of the components refer to 
the coordination of the software components (i.e., the coordination of, communication be- 
tween, and synchronization of the components). The principles and guidelines refer to the de- 
sign decisions made, their rationale, and the policies for adopting and enforcing those 

In practice, partitioning these restrictions into requirements, goals, and constraints is frequently not as clear 
cut as we imply. For example, certain system quality attributes, such as performance and security, can be 
viewed as system requirements. Our intention is to be inclusive rather than definitive. 
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decisions. The principles and guidelines address how the system is constructed, and how the 
system is expected to change or evolve. 

2.3   Architecture-Based Development 
Software architecture is critical to the successful development and maintenance of large and 
complex software systems. Booch, in his book Object-Oriented Design with Applications, 
states the following: 

We have observed two traits common to virtually all of the successful object- 
oriented systems we have encountered, and noticeably absent from the ones 
we count as failures: the existence of a strong architectural vision and the 
application of a well managed iterative and incremental development cycle. 
[Booch 91] 

In our opinion, the applicability of this observation extends to software systems in general, and 
more than hints at the value of architecture-based development. 

Architecture-based development is a process that utilizes the software architecture as the pri- 
mary tool for the design, evolution, implementation, management, migration, and understand- 
ing of a software system. It involves [Clements 96] 

• organizing the work products around the architecture 

• implementing the software system based on the architecture 

• maintaining the implementation to reflect changes in, and to ensure 
conformance to, the architecture 

Architecture-based development includes the normal design, program, and test activities. It 
also has the following characteristics [Clements 96]: 

• A domain analysis identifies and takes advantage of the commonalities and 
variations within a specific domain through an understanding of the 
underlying domain requirements.The belief is that a more general set of 
requirements will yield a more flexible, robust software system. 

• Iterative selection or development of a software architecture involves 
prototyping, testing, measuring, and analyzing the software architecture 
[Kruchten 95]. This provides early assurance that the system will perform as 
required. Further, it has been argued that the iterative development of a 
software architecture by a small team yields conceptual integrity [Brooks 95]. 

Effective representation and communication of the architecture to the 
stakeholders provides a common understanding of the software system and 
supports the coordinated effort required for system development. 

• Evaluation and verification of the software architecture confirms that the 
selected or developed architecture can satisfy the system requirements 

• 
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before the system is implemented. This is strongly tied to the selection or 
development of an architecture. 

• Enforced system conformance to the selected architecture during system 
development ensures the conceptual integrity of the system. We would 
extend this to include system maintenance. Without enforcement, the 
decisions of the system designers can be lost or violated, causing the 
software architecture to fail as a basis for effective communication among the 
system stakeholders. 

The benefits that can be expected from architecture-based development include [Garlan 95] 

• understandability, by exposing the high-level constraints on system design 
and the rationale for specific architectural choices 

• potential reuse of both the software components and the architectural 
framework, possibly forming the basis for a product line 

• system evolution, by making the direction of expected system evolution 
explicit, improving the understanding and predictability for modification (cost 
and schedule), and separating the component functionality from the 
coordination of the components 

• analysis, by the consistency of and conformance to a particular architectural 
style 

• management, by using the definition of the software architecture as a key 
milestone, and supporting scheduling and cost estimation of development 
and maintenance work 
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3      Aircrew Trainer Simulation Softwa? 

3.1 Introduction 
The goal of this chapter is to provide a high-level description of the simulation software re- 
quired by aircrew trainer systems. We describe 

• aircrew trainers and their associated benefits 

• the role of simulation software in a trainer 

• the traditional data-driven architecture of aircrew trainer simulation software 

• the concerns of the B-2 trainer software team at the start of the development 
effort 

Finally we provide a brief analysis of the inherent difficulties associated with data-driven archi- 
tectures. 

3.2 Aircrew Trainers 

3.2.1    Overview 
Simulation systems, such as aircrew trainers, mimic the behavior of a real-world system in a 
meaningful manner. By meaningful, me mean that the simulation system has an intended pur- 
pose and a known level of correlation and accuracy with the real-world system (i.e., fidelity). 
An aircrew trainer is a simulation system that reproduces the behavior of an aircraft and its 
operating environment (e.g., weather conditions) for the training of an aircrew (the pilot, copi- 
lot, navigator, etc.). A wide variety of aircrew trainers exists. In this report, the aircrew trainers 
that we refer to are the high-fidelity aircrew trainers currently used by the U. S. Air Force. 

Figure 1 provides an overview of the operation of a generic aircrew trainer. The boxes repre- 
sent the systems of the trainer, while the thick arrows indicate the flow of information. The sim- 
ulation software of particular interest to this case study is located in the dotted rectangle titled 
"Simulation Systems." The air vehicle system is responsible for calculating the behavior of the 
simulated aircraft, while the environment system is responsible for calculating the behavior of 
the tactical and natural environment of the simulated aircraft. 

The trainer operates as a classic feedback loop. Based on the information presented to the 
crew by the cueing systems, the cockpit controls can alter the state of the trainer. The altered 
state is then presented to the crew via the cueing systems. Additional control of the trainer is 
provided by the instructor operator station (IOS), allowing the instructor to monitor and alter 
the state of the trainer. The IOS allows the instructor to tailor specific missions and situations 
for the training of the aircrew. 
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Figure 1: Operation of an Aircrew Trainer 

The cockpit of the aircrew trainer is designed to realistically reproduce the cockpit of the sim- 
ulated aircrew, both in appearance and behavior. The trainer includes a variety of cueing sys- 
tems that provide audio, visual, and motion cues to the crew. These systems employ physical 
devices to simulate turning, climbing, etc. The cockpit controls, in turn, respond to inputs from 
the crew. 

3.2.2   Associated Benefits 
Creating a high-fidelity aircrew trainer is no small enterprise. The B-2 project, for example, has 
employed 250 engineers for 7 years, and has produced 1.7 million lines of Ada code for the 
simulator. The simulation software, however, represents only a part of the B-2 trainer (e.g., the 
physical cockpit of the trainer, the cueing system's hardware and display software). 
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However, there are many compelling benefits associated with the use of trainers, including im- 
proved cost, safety, flexibility, convenience, and security, as explained below: 

• cost: Modern aircraft are expensive to build, operate, and maintain. Single 
use weapons can also be prohibitively expensive for training purposes [Rolfe 
86]. 

• safety: The trainer can provide experience with high-risk situations without 
endangering the crew or a plane. 

• flexibility and convenience: Training should include interactions with potential 
enemy aircraft and weaponry, as well as unusual missions and situations 
(e.g., severe weather conditions). Trainers can provide an aircrew with such 
experiences; further, these missions can be used to assess an aircrew's 
skills and repeated to fine-tune the aircrew's performance. 

• security: Trainers can minimize exposure of secret aircraft, weaponry, and 
capabilities while providing the aircrew with necessary training. 

3.3   Aircrew Trainer Simulation Software 
Our primary focus in this paper is on the software required by an aircrew trainer to simulate 
the aircraft (shown as the dotted box titled "Simulation Systems" in Figure 1). This section ex- 
plains the operation of the simulation software in the aircrew trainer. 

The fundamental problem addressed by the trainer's simulation software is to calculate how 
the aircraft will behave at any given time. The aircrew trainer simulation software is designed 
based on a conceptual model of the aircraft and its operating environment. A model is an ab- 
straction of the real world that bridges the gap between the aircraft and the simulation soft- 
ware. The model identifies key objects from the aircraft and operating environment, and 
captures the behavior of those objects and the relationships between them.4 The model also 
captures more global characteristics of the aircraft that are not directly reflected in the objects 
or their behavior: characteristics include the aircraft's dynamic nature (e.g., parts of an aircraft 
being upgraded, changes in the on-board computer hardware or software, and new naviga- 
tional systems). A model addresses the primary characteristics of a simulation system; i.e., 
that it mimics the behavior of a real-world system in a meaningful manner. 

In the model, an object's behavior at any given time is characterized by, and depends upon, 
the state of the object, and possibly the state of other objects in the model. State associates 
a particular time-dependent behavior with an object. For example, consider an aircraft's jet en- 
gine as an object in a particular model of an aircraft. The engine will behave differently depend- 
ing on whether it is on or off. "On" and "off" are states of the engine. Further, the state of that 
engine can change from "on" to "off" depending on the state of other objects in the model (the 
fuel tank or fuel pump, for example). 

Although the elements of a model are referred to as objects, there is no assumption at this point of an object- 
based or object-oriented design. 
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The model forms the basis for the design of the simulation software. The trainer's simulation 
software calculates the state of the simulated aircraft by calculating the state of each of the 
key objects identified by the model. Each object from the model has associated code (i.e., a 
state-calculating component) in the software system that computes that object's state. Those 
components are then coordinated into a solution to the original problem: how to compute the 
state of the aircraft. 

There are complications to this simplistic view of the simulator software. The state of the air- 
craft is calculated discretely rather than continuously; that is, state is updated at the end of 
each of a series of discrete time periods, based on the state at the start of the period. As long 
as the time periods are short enough, the behavior of the simulated aircraft can be effectively 
mimicked. The length of the time periods depends, in part, on the fidelity required by the sim- 
ulation system. 

The state calculations in a discrete simulation system must be managed; this management in- 
cludes the following: 

• The state-calculating components must be scheduled to execute at the 
proper times within those discrete time periods. 

• Since the state of an object can depend on the state of other objects, state 
information must be communicated between the software components. 

• Since the simulated aircraft's systems operate at various rates, their 
associated software components must execute at corresponding rates to 
faithfully reproduce the simulated aircraft's behavior. 

Finally, the trainer incurs overhead while managing this scheduling and communication. 

Figure 2 illustrates the simulator processing that occurs during a typical time period. 

Execution of 
State 
Calculations 

Communication 
of State 
Information 

Simulator 
Overhead 

Slack 
Time 

^   1 
n frn I Ime - 1 

Figure 2: Simulator Time Period 

The timing of the state information update is critical. The state calculations from Figure 2 re- 
quire the state information as it exists at the start of the time period. If some part of the state 
information is updated during the time period, and subsequently used during that time period, 
the results of the calculation will be erroneous. This is called the data coherence problem. 

There are many different possible software architectures that could support the simulation 
software in an aircrew trainer. In the following sections, we will discuss an early family of soft- 
ware architectures for aircrew trainers. 
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3.4   Data-Driven Software Architecture 

3.4.1    Overview 
Before the advent of structural modeling, the data-driven software architecture was the de fac- 
to standard for aircrew trainer simulation software. Dating back to the earliest digital computer- 
based aircrew trainers, data-driven software architectures provided a good solution to the 
trainer simulation software problem as it existed in the 60s and 70s [Rolfe 86]. Data-driven ar- 
chitectures have been successfully used to simulate aircraft as complex as the B-52. 

Figure 3 illustrates the high-level interactions of a typical simulator based on the data-driven 
architecture. The thin arrows represent data flow, while the thick arrow represents flow of con- 
trol. The thin rectangles represent data areas, while the thick rectangles represent code. 

Scheduling Table LACOUIIVC 

i L 

Data Pool 

1 < 
i L 

System Routines 

Figure 3: Data-Driven Software Architecture 

The data-driven architecture consists of the 

• executive: code responsible for scheduling the system routines based on the 
contents of the scheduling table 

• system routines: code responsible for calculating the state of the trainer 

• scheduling table: data specifying the scheduling requirements for the system 
routines 

• data pool: data area shared by the system routines for storage and 
communication of state information 
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The executive dispatches the various system routines based on the entries from the schedul- 
ing table and information from the data pool. Each system routine calculates state information 
based on the contents of the data pool, and then updates the data pool to share those results 
with other system routines. 

The system routines are a set of software subsystems that correspond to the major functions 
of the simulated aircraft. Examples of these system routines could include, for example, taxiing 
and landing. The physical structure of the aircraft cuts across the functional subsystems. For 
example, the landing gear is intimately involved in both taxiing and landing. The state of the 
landing gear must be considered when calculating the state of both the taxiing and landing 
subsystems. The data-driven architecture views the subsystems as black boxes, mapping in- 
puts to outputs, but hiding the subsystem's internal behavior. This forces both the taxiing and 
landing subsystems to contain state calculations for the landing gear. 

3.4.2    Difficulties with the Data-Driven Architecture 
Data-driven architectures were an effective solution to the trainer software problem as it exist- 
ed 20 years ago; the problem, however, has changed dramatically. Today's airplanes are 
more complex and dynamic; today's computer hardware is less expensive and more powerful, 
while today's software is more complex and expensive. Application of the data-driven archi- 
tecture to software trainers for modern aircraft is something of a mismatch between the newer 
problem and the older solution. 

Symptoms of this mismatch surface during integration and maintenance of systems based on 
the data-driven architecture. The integration of these systems has been described as some- 
thing of a "big bang." Most, if not all, of the trainer simulation software has to be written before 
integration testing can begin. There is also the concern that once the system is integrated it 
will not perform as required, since system testing cannot begin until after integration. 

Maintenance of such systems is also difficult. The functional decomposition of the data-driven 
architecture spreads the state information and calculations, as well as the communication of 
state information, across the subsystems. Data coherence problems have resulted from this 
spreading. Further, development of different subsystems by different software teams leads to 
multiple mechanisms for representation, calculation, and communication of state information. 
Hence, state calculations are difficult to locate; once located, it is difficult to determine the ef- 
fects of a change. 

Maintenance is further complicated by communication difficulties between the domain experts 
and the software experts. The domain experts understand the physical structure of the aircraft; 
however, the software structure understood by the software experts reflects the functional, 
rather than the physical, structure of the aircraft. The functional decomposition fails to provide 
a direct mapping between the physical structure of the aircraft and the software. In effect, the 
domain and software experts have a different vocabulary. 
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The spreading of state representation, calculation, and communication leads to interdepen- 
dences among the data-driven architecture's system routines. Those interdependences com- 
plicate the 

• concurrent development of the simulator software 

• incremental development of the simulator software 

• simulation of malfunctions5 

• freezing, saving, and restoring of state information 

3.5   The B-2 Project 
As the simulated aircraft became more complex, the software-related difficulties with the train- 
ers based on the data-driven architecture became more severe. The B-2 program is a partic- 
ularly relevant example, since the initial software architecture for the B-2 trainer was data 
driven, but its current architecture is based on structural modeling. There were several con- 
cerns at the beginning of the B-2 trainer effort that led to the development of structural mod- 
eling. The B-2 was probably not the first trainer where these concerns surfaced, but it was the 
first program to address them by using structural modeling. 

The B-2 was developed as a black program: the existence of the plane was highly classified. 
Development of the trainer began in the mid 1980s. Like several previous Air Force trainers, 
the B-2 trainer would be implemented as a distributed simulation with hard real-time require- 
ments. Unlike earlier trainers, the B-2 trainer would use Ada as the primary implementation 
language. 

From the start of the effort, the B-2 trainer developers knew that the 

• trainer would be long-lived: At the time the trainer work began, the B-2 itself, 
and hence the trainer, was projected to have a lifetime of 30 years. 

• simulation software system would be large: Based on the complexity of the 
B-2 and previous experience with constructing aircrew trainers, the 
developers believed that the B-2 trainer would require a lot of software (in 
fact, 1.7 million lines of Ada code were written) and that the integration of that 
software would be very difficult. 

• development effort would be distributed: They also knew that different 
sections of the trainer software would be developed at different, 
geographically distant locations, and those sections would become available 
at different times. For example, the radar-system simulation software was to 
be developed on the west coast, while the rest of the simulation software was 

A malfunction is, in effect, a sudden change in a portion of the simulator's state information. For example, a 
hydraulic pump's output can suddenly drop to zero. 
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• 

to be developed on the east coast. It was also known that the radar system 
would be added late in the development. 

initial requirements were unknowable: When work began on the trainer, the 
B-2 was not yet built; a full description of B-2 did not exist. In short, the aircraft 
and the trainer would be built in parallel. 

trainer would be dynamic: Changes to the B-2's systems, such as new 
weapons systems, were expected over the lifetime of the aircraft and would 
have to be reflected in the trainer. 

Long-lived systems imply that ease of maintenance and modifiability are more of a concern, 
while larger systems imply that the integration of the software is more of a concern. The dis- 
tributed development required by the B-2 trainer implied the need for unambiguous communi- 
cation between developers and - coordination of their efforts. The initially unknowable 
requirements, and the continuing dynamic nature of the B-2 implied that the simulation soft- 
ware would need to evolve with the aircraft from the start of the trainer development effort. 

3.6   Summary 
We view the difficulties and concerns expressed in the previous sections of this chapter as 
symptoms of the lack of changeability of both the data-driven architecture and the develop- 
ment process it supports. Changeability is defined as the ease with which a software system 
can be changed throughout its life cycle [Clements 96]. This definition extends the standard 
notions of modifiability and maintainability to include changes in requirements and specifica- 
tions. 
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4      Structural Modeling 

4.1   Introduction 
The goal of this chapter is to explain the use of structural modeling in the development of air 
vehicle simulation software. We describe 

• the partitioning of the components in the software architecture based on 
structural modeling 

• structural types and structural models, and their relationship to the air vehicle 
software architecture 

• the development artifacts associated with structural models 

Structural modeling is based on the realization that the difficulties and concerns expressed in 
the previous chapter represent design issues to be addressed by the software architecture. It 
can be understood as a design effort to produce a software architecture that supports change- 
ability. The general software design principles to be applied include 

• separation of domain commonality from variability: separating the code 
expected to remain constant for the given domain from the code expected to 
change 

• object-based partitioning based on the physical structure of the simulated 
aircraft 

• separation of concerns 

• restriction of interfaces and mechanisms for communication between 
components 

• restriction of the flow of control 

An architectural style "defines constraints on the form and structure of a family of architectural 
instances" [Garlan 95]. This chapter explains structural modeling as an architectural style that 
supports changeability in aircrew trainer simulation software by restricting the structure, be- 
havior, and organization of the components of the software architecture. The process involves 
partitioning the system (ultimately into the components of the architecture), and then restrict- 
ing the coordination of and communication between the resultant partitions. 

The simulation software architecture based on structural modeling has evolved over the past 
decade, particularly in the area of communication. Although prototype versions of the IOS and 
synthetic environment based on structural modeling exist (see Figure 1), only the air vehicle 
is both based on structural modeling and currently in use in operational aircrew trainers. In this 
chapter, we will examine the architecture of the air vehicle as presented in the Guidebook [AS- 
CYW 94] and discuss the following: 

• separation of the general simulator support software from the aircraft-specific 
software 
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• object-based decomposition of the aircraft-specific software 

• use of structural types to capture common functionality between components 
and to restrict the structure of those components 

• use of a structural model to generate a software architecture from a set of 
structural types 

• the development artifacts used to create and support the software 
architecture 

4.2   Separation of Domain Commonality from Variability 
At the highest design level, the air vehicle simulation software is partitioned by function, into 
general simulator support and aircraft-specific state calculation software (see Figure 4). The 
simulator support software, traditionally referred to as the executive, handles the scheduling 
and synchronization of the air vehicle simulation, and the internal and external communication 
of state information. The aircraft-specific software calculates the state information for the sim- 
ulated aircraft. 

General simulator support (executive) 

Aircraft-specific state calculations 

Figure 4: High-Level Partitioning of Simulator Software 

This partitioning separates the software that can change from aircraft to aircraft from the soft- 
ware that is constant for the domain (i.e., aircraft trainers). Hence the executive can be aircraft 
independent (i.e, insulated from changes in the simulated aircraft). It can provide a basis for 
an architectural framework for the 

• incremental development of a trainer for a specific aircraft 

• development of other trainer simulation systems (i.e., for different aircraft). 

Note also that this partitioning isolates the software corresponding to the user's view of the 
trainer (the aircraft-specific calculations). This is a first step towards improving communication 
between the software experts and the domain experts. 

A more detailed examination of the executive is presented in Appendix 1. Interested readers 
should refer to the appendix after reading the rest of the current chapter. 

4.3   Object-Based Components 
The aircraft-specific state calculation software is partitioned using an object-based strategy 
that reflects the least common denominator of the physical structure of the aircraft: i.e., the 
part. The behavior of the simulated aircraft results from the interactions and relationships be- 
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tween the parts of the aircraft; the object-based partitioning is the first step towards mirroring 
this in the software. Figure 5 shows an example of this partitioning for some of the parts in a 
hydraulic system of the aircraft. 

Pump 
Motor 

Pump Fluid 
Reservoir 

Shut-off 
Valve 

Figure 5: Partitioning of the Aircraft-Specific State Calculations 

The part is the smallest expected unit of change of the simulated aircraft; significant change 
affecting the simulation of an aircraft is not expected to occur at a lower level in the physical 
aircraft. Hence this partitioning is a first step towards supporting modifiability. As a result of the 
object-based partitioning, each state-calculating component encapsulates its own portion of 
the overall aircraft state and its related calculation, limiting the effects of changes to that infor- 
mation and calculation. This further promotes independent development. Finally, the view of 
the airplane as a set of cooperating parts is consistent with the user's view of the aircraft, fur- 
ther improving communication between the software expert and the user. 

Every state-calculating component is responsible only for calculating the state information for 
a part of the simulated aircraft (e.g., a fuel tank). Responsibility for communicating state infor- 
mation to and from the state-calculating component, as well as scheduling the execution of 
that component, is external to the component. Hence each state-calculating component re- 
quires interfaces that cause the component to 

• be executed at the proper time 

• receive required state information from other state-calculating components 

• supply its state information to other state-calculating components 

• reset its own state (e.g., instructor restarts the exercise) 

• alter its own state information aperiodically (e.g., an instructor-initiated 
malfunction). 

These commonalities of general functionality (in this case, to calculate the state of a particular 
aircraft part) and resultant interfaces can be exploited by restricting all the state-calculating 
components to a common set of visible operations. For example, every state-calculating com- 
ponent can be required to have exactly three visible operations: update, configure, and 
process_event, where 

• Update calculates the next state of its associated part based on its current 
state and its input parameters which contain the required state information 
from other state-calculating components. Update in turn makes its 
component's state information available in its output parameters. 
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• Configure resets the internal state of the component based on its input 
parameters. 

• Process_event alters the internal state of the component based on its input 
parameters (e.g., malfunctions). 

4.4   Structural Types 
The restriction, or uniform treatment, of the state-calculating components simplifies this con- 
struction and promotes understandability. Structurally, every state-calculating component is 
the same. Each such component has clearly defined responsibilities to the rest of the system. 
State information enters and leaves every such component by the same mechanism. 

The pairing of the general functionality of a related group of components with an associated 
restricted set of visible operations yields a structural type. A structural type captures the com- 
monalities of form and interaction of a group of architectural components, specifying the com- 
mon type of functionality and the set of capabilities (i.e., operations) shared by the members 
of that group.6 The variability (i.e., the precise nature of the state information and its calcula- 
tion) is relegated to the parameter lists and bodies of the operations, respectively. 

A structural type is traditionally represented as a box (or icon), with its visible operations high- 
lighted. For example, the structural type for the state-calculating components [ASCYW 94] is 
shown in Figure 6. 

 : 
Update 

Component 

1 
Process Event 

Configure 

Figure 6: Component Structural Type 

4.5   Subsystems 
The parts of the simulated aircraft group naturally into the physical subsystems of the aircraft 
(e.g., the hydraulic braking subsystem), and function in concert to physically affect the behav- 
ior of the aircraft. This grouping is mirrored in the architecture: the subsystem controller is a 
component that groups and controls logically related state-calculating components.7 

6- This is a high-level notion of functionality: in this case, to calculate the state associated with a part in the sim- 
ulated aircraft. It ignores lower level functionality. Hence, other commonalities across state-calculating com- 
pounds are not captured. For example, all the pumps in the simulated aircraft push fluid through a system. 

7- The grouping in the air vehicle is based on the physical subsystems of the simulated aircraft; however, the 
grouping can, for example, be rate based to enhance performance. For convenience, we define a subsystem 
to be a subsystem controller together with its associated state-calculating components. 
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The state-calculating component has exactly one view of the rest of the air vehicle software 
system, as realized by its parameter list. The subsystem controller, however, has two views of 
the rest of the system: outside of the subsystem and within the subsystem. 

4.5.1    The Subsystem from the Outside 
From outside of the subsystem, the air vehicle simulation software consists of the executive 
and various subsystems (Figure 7). In a sense, the subsystem bridges the gap between the 
general support and aircraft-specific code. 

Executive 

Subsystem 1 Subsystem 2 

Figure 7: View Outside of the Subsystem 

In the same way that the state-calculating component encapsulates the state information and 
calculation for an associated part of the simulated aircraft, the subsystem encapsulates the 
state information and calculation for a group of state-calculating components. Responsibility 
for communicating state information to and from the subsystem, as well as scheduling the ex- 
ecution of the subsystem, is external to the subsystem. Hence, each subsystem controller re- 
quires mechanisms that cause the subsystem to 

• execute at the proper time 

• receive state information from other subsystems 

• supply its state information to other subsystems 

• reset its state (e.g., instructor restarts the exercise) 

• alter its state information aperiodically (e.g., an instructor-initiated 
malfunction) 

Just as with the state-calculating components, visible operations are defined for the sub- 
system controller: 

• Update calculates the next state of the subsystem based on the subsystem's 
current state and input parameters. 

• Configure resets the internal state of the subsystem based on its input 
parameters. 

• Process_event alters the internal state of the subsystem based on its input 
parameters. 

• Import causes the subsystem controller to access the export areas of the 
other system controllers. 
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The update operation for the subsystem controller is different from the update for a state-cal- 
culating component. The state information required by, or supplied by a subsystem, is not 
passed by parameters;8 rather, state information is communicated between subsystems by 
use of single-writer, multiple-readers export areas, typically implemented by shared memory. 

Controlled accessing of these export areas is required to prevent data cohesion problems. 
This control is provided locally by the subsystem controller's import operation, and is exercised 
externally by the executive.9 

A subsystem controller structural type can be defined using an argument similar to the one 
used with the state-calculating components (see Figure 8). 

1  
Update 

Import 

Subsystem 
Controller 

Process Event 

Configure 

Figure 8: Subsystem Controller Structural Type 

From the outside of the subsystem, the subsystem controller encapsulates the subsystem. 
This encapsulation provides a common abstraction or view of the aircraft-specific code to the 
executive, hides the existence of the state-calculating components from the rest of the system, 
and allows the executive to schedule subsystems. This encapsulation defers the scheduling 
of the state-calculating components to the subsystem controller, and simplifies the executive's 
scheduling tables. 

4.5.2   The Subsystem from the Inside 
From within the subsystem, the subsystem controller uses the visible operations of its state- 
calculating components to 

• schedule and invoke its components 

• supply state information to its components 

• receive state information from its components 

• reset the state of its components (e.g., instructor restarts the exercise) 

• alter the state information of its components aperiodically (e.g., an instructor- 
initiated malfunction) 

The use of parameters would require executive knowledge of aircraft-specific state information, violating the 
original partitioning (i.e., general support vs. aircraft-specific code). 

The import operation has been eliminated from later architectures, as the data cohesion problem is, for the 
most part, addressed by the state-calculating component's encapsulation of its state information. 
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State information imported into a subsystem or exported from a subsystem is maintained in 
the subsystem controller as local variables. 

From the inside of a subsystem, the subsystem controller 

• hides the origin of supplied state information from the state-calculating 
components: Each state-calculating component sees only its own state 
information and the input parameters supplied by the subsystem controller. 
The input parameters contain the state information required by a state- 
calculating component, but owned by a different state-calculating 
component. 

• schedules and invokes its state calculating components. This simplifies the 
scheduling tables, further supporting the abstraction of aircraft-specific 
knowledge from the executive. 

• provides a uniform mechanism for adding and deleting state-calculating 
components, supporting modifiability by limiting the effects of additions and 
deletions to the subsystem. 

• limits the effects of changes to existing state-calculating components. Only 
changes to the communicated state of a state-calculating component can 
potentially affect the subsystem controller and other state-calculating 
components. 

The subsystem grouping is understood by the users of the aircrew trainer. Grouping the state- 
calculating components based on the physical subsystems of the simulated aircraft further 
promotes communication between the domain and software experts. 

4.6   Structural Models 
In the previous sections, we presented the partitioning of the air vehicle as a set of structural 
types. A particular software architecture for the air vehicle simulation consists of instances of 
the previously described structural types; those instances are organized within the architec- 
ture according to a set of rules governing their interactions. A structural model is a small col- 
lection of structural types, together with the rules for organizing instances of the structural 
types into an architecture [ASCYW 94]. 

A structural model can be thought of as a set of restrictions that constrains 

• the components of the architecture to particular forms and interactions based 
on a system-wide partitioning (i.e., into the object-based state-calculating 
components, subsystem controllers, etc., from the previous sections) 

• each functional type of component (i.e., structural type) to a common set of 
capabilities (i.e., operations for interacting and communicating with the other 
components of the architecture) 

• the organization within the architecture according to rules that govern the 
grouping of, and the flow of control between, the components of the 
architecture (Appendix B contains more details on the flow of control.) 
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4.7   Development Artifacts 
Three artifacts are used to develop the air vehicle simulation software: specification forms, 
software templates, and an integration harness. Specification forms document the design 
specifications for the subsystem controllers and state-calculating components. A subsystem 
specification form contains [ASCYW 94]: 

• subsystem identification 

• subsystem description 

• data interfaces 

• design assumptions 

• temporal dependencies 

• event algorithms 

• cyclic algorithms 

• subsystem components 

• resource allocation 

• reference data 

• design concerns 

• requirements traceability 

A similar specification form is used for state-calculating components. 

A software template is an Ada 83 code skeleton that acts as a bridge between the specification 
form and the Ada source code for a subsystem controller or state-calculating component. 
There is a direct correlation between the specification forms and the software templates. The 
templates and specification forms simplify the coding process and support a uniform style of 
coding within the air vehicle. 

The integration harness is a skeleton version of the simulation system that consists of the ex- 
ecutive, subsystem controllers, and synthetic workloads for the anticipated state-calculating 
components. It provides an initial "operational model of the simulation software architecture 
[ASCYW 94]." The integration harness can be used to support the incremental development 
of the air vehicle implementation by merging components into the harness as they are com- 
pleted. Further, the integration harness provides a method for early (and continuing) verifica- 
tion of the architecture's performance. 
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4.8   Summary 
Structural modeling 

• defines a small set of structural types that restrict the components of the 
simulator software architecture; that is, it restricts the responsibilities of, and 
the interactions and flow of control between, the software components. 

• adopts a uniform, controlled, and explicit mechanism for the communication 
of state information 

• adopts a finer granularity for the state-calculating software components than 
that of the data-driven architecture (i.e., at the aircraft part rather than the 
functional subsystem level) 

• encapsulates the state information calculated by a software component in 
that component (i.e., a state-calculating component owns the state it 
calculates) 

• encapsulates the subsystem-level state information and communication 
within the subsystem 

The architecture generated by structural modeling exhibits abstraction, encapsulation, modu- 
larity, and typing.10 The components are self contained and predictably replaceable. The ef- 
fects of change are localized, relatively easily understood, and predictable. The connections 
between the software components and their subsystem controller are explicit, consistent, and 
exposed, as are the other connections within the air vehicle architecture. Further, the seman- 
tics behind the connections are consistent. 

10. 
The relationship of structural modeling to current object-oriented design techniques will be discussed in Chap- 
ter 6. 
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5      Organizational Factors 

5.1   Introduction 
This chapter describes the impact of structural modeling on the organizations interviewed. 
Specifically, we describe the impact on the interviewed organization's 

• management structure 

• staffing profiles 

• development approach, including life cycle, methods and tools, and 
documentation 

• management of the learning curve for structural modeling 

Structural modeling was developed in the mid-80s through the efforts of key members of the 
engineering office at ASC/YW. Although the initial incentive was provided by ASC/YW, many 
senior software engineers from various aircrew trainer projects and the SEI worked coopera- 
tively to develop and mature structural modeling through its use with Air Force aircrew train- 
ers. Funding was provided by ASC/YW for the development of the approach, training, and 
consulting to assist individual projects. 

While all aircrew trainers are the responsibility of ASC/YW, each aircrew trainer was devel- 
oped for, and administered by, a separate program office (for example, the B-2). Further, each 
trainer was built by a different contractor. This situation made ASC/YW's enforcement of a 
technical solution difficult. 

Structural modeling was introduced into the development of new simulators at the same time 
as several other emerging software development technologies and processes, namely, 
Ada83 and its development environments, and DoD-STD-2167 (and later DoD-STD-2167A) 
for defense system software development.11 DoD-STD-2167 was intended to facilitate the 
construction and maintenance of large, defense, software-intensive systems. Ada83 can 
enable the development of higher quality, more maintainable systems. 

11. 
DoD-STD-2167 requires a rigorous set of documents, milestones, audits, and reviews tailored to the needs of 
the specific project. Typical interpretation of the standard was the use of extensive documentation and of a 
waterfall life cycle. DoD-STD-2167 was issued in the mid-80s, roughly as the B-2 project started. DoD-STD- 
2167A was released in 1988 and used by the subsequent flight simulators. To improve the readability of this 
report, we have used DoD-STD-2167 to refer to the series of DoD-STD-2167s. 
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The following projects have used structural modeling with SEI support: 

• B-2 Weapons System Trainer, started in 1986, with 1.7 million lines of Ada code 
developed by Hughes Training/Link Division. The system is operational. 
Hughes/Link continues to maintain the system. 

• C-17 Aircrew Training System (ATS), started in 1990, with 350,000 lines of Ada code 
developed by McDonnell Douglas. The system is operational. McDonnell Douglas 
owns the software and performs the training for the Air Force. 

• Special Operations Forces (SOF) ATS, supporting the C-130, started in 1991, with 
750,000 lines of Ada code developed by Loral Federal Systems. One-half of the 
system uses structural modeling. Due to budget shifts, the system is still under 
development, although Loral has delivered partial functionality. 

• Simulator Electric Combat Training (SECT), started in 1992, with 250,000 lines of 
Ada code developed by AAI Corporation. Three-quarters of the system uses 
structural modeling. The project is currently in the implementation phase. 

Over the course of our interviews, we spoke with contractors who used structural modeling in 
its infancy, as well as contractors who used the technology after maturation and broader ac- 
ceptance within the flight-simulator community. We spent one day on site with seven members 
of the B-2 project. Extended phone interviews were conducted with senior technical members 
from the C-17 and SOF/ATS projects. 

This chapter summarizes the results that the above projects reported and focuses on the im- 
pact of structural modeling on the contractor organizations. The SEI studied their organization- 
al structures and staff profiles; the processes, methods, and tools that make up their software 
development approaches; and the learning curve for the various organizations. 

5.2   Results 
All the interviewed projects felt that structural modeling had greatly improved the overall qual- 
ity of their simulation systems. Examples of reported improvements included 

• significant reduction in test problems. In a previous data-driven simulator of 
comparable size (the B-52), 2000 - 3000 test descriptions (test problems) were 
identified during factory acceptance testing. With their structural modeling project, 
600 - 700 test descriptions were reported. They found the problems easier to correct; 
many resulted from misunderstandings with the documentation. 

significant reduction in staff for installation. On-site staff during initial installation and 
use was reduced by about 50%. They found fault detection and correction 
significantly easier. 

significant reduction in test expense. Staff typically could isolate a reported problem 
offline rather than going to a site. Reduced testing and fault isolation on the actual 
trainer was particularly significant given the high expense of trainer time.12 

• 

• 

12. Trainers frequently require high availability levels. For example, the B-2 must operate at 95% availability. The 
Air Force cannot afford to have trainers used for fault isolation. 
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• reduction in side-effects from software changes. Most projects noted that side- 
effects from software changes were a rare occurrence, primarily due to the 
encapsulation of functionality in subsystems. 

• extreme ease of integration. All projects commented on the lack of the "big-bang" 
effect when compared to their previous data-driven simulators of comparable size. 
The use of common structural types for components and a standard mechanism for 
communication between components were cited as key contributors. 

• significant improvement in reuse. One project reported reuse across trainers of the 
software architecture, executive, and subsystem controllers. 

• significantly reduced defects. Since the use of structural modeling, defect 
rates for one project are half that found on previous data-driven simulators. 
Figure 9 shows the cumulative results through integration for a particular 
project. (The dotted line is based on historical data, while the solid line is 
based on structural modeling data collected through integration.) 
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Figure 9: Reported Defects - Before and Since Using Structural Model 

5.3   Impact on Organizational Structure 
The contractor organizations for flight simulators include more than a software development 
group. They also include, at a minimum, a program-level, system engineering, and hardware 
engineering groups. All groups contribute to the eventual flight simulator, which is a system of 
software and hardware. Decisions made for either software or hardware have an impact on 
the total system by varying degrees. Structural modeling represented a significantly different 
approach to the software. 
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Structural modeling was introduced into the various simulator projects as primarily a software 
architecture and software construction technology. The software development groups were 
the first to use the technology and determine how to integrate it into their development oper- 
ations. Other organizational parts of the projects, such as the program-level or system engi- 
neering groups, remained remote from the technology and did not change their organizational 
structures or procedures. All interviewed reported that this presented problems, which will be 
discussed later in this section. 

To understand the changes faced by many of the software development groups, the organi- 
zational structures typically used prior to structural modeling must be understood. During the 
1960s and 1970s, the flight simulator community used the data-driven software architecture. 
The organizational structures for the software development groups that we interviewed mir- 
rored the functional structure of the data-driven architecture. 

Several found this traditional software development organizational structure limiting. Glaize 
identified five areas of potential problems due to the mismatch of the software development 
group's organizational structure with the software development methodology and resulting 
architecture [Glaize 90]. The five potential problem areas noted were 

• software ownership 

• documentation ownership 

• work breakdown structure and time accounting 

• management 

• logistics of geographically distributed development 

All five problem areas are manifestations of the same mismatch between the organization and 
architecture structures. 

For example, flight simulators provide simulations of take-offs and landings. With the data- 
driven simulator projects, one distinct part of the architecture handled take-offs and another 
handled landings. Both parts of the architecture would manipulate the landing gear. These 
projects typically assigned the take-offs part of the architecture to one functional group and 
the landings to another functional group. Each group would develop their own code to manip- 
ulate the landing gear. With this one-to-one mapping of architecture structure to functional 
groups, responsibility for software development, documentation development, work break- 
down assignments, and geographically separate development were well defined. 

In contrast, with an architecture created using structural modeling (based on objects), take- 
offs and landings are handled by several distinct parts of the architecture, with one part 
manipulating the landing gear. If the take-offs functional group and landings functional group 
are retained, responsibility for the software development, documentation, or work breakdown 
for the landing gear part of the architecture is unclear. As a result of this mismatch, a number 
of the organizations interviewed began modifying their software development organization to 
more closely match the software architecture developed with structural modeling. 
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The B-2 project initially used a large team of designers; this resulted in problems in gaining 
consensus and apportioning work. Since the B-2 project, most organizations have used a 
small team (five or six) of senior, experienced architects and senior designers to create the 
software architecture. Projects reported that this approach was more effective in creating a 
stable, consistent architecture that was ready for further detailed design and implementation 
by larger numbers of engineers. 

Most projects reported that members of the architecture group typically were reassigned to 
other jobs once the software architecture was defined. Because of this, the architecture was 
sometimes compromised when issues encountered during implementation and maintenance 
were resolved; staff knowledgeable about the architecture, key design decisions, and under- 
lying assumptions were no longer available to the project. Several postulated the need for a 
small, permanent architecture team with the authority and responsibility for the software archi- 
tecture. This team would not only create a software architecture for a project, but would also 
control the evolution of the software architecture and resulting system. 

5.4   Impact on Staffing Profiles 
This section focuses on the impact to the software development groups of the flight simulator 
projects and highlights issues encountered between the software groups and other parts of 
the project. Staffing profiles were reported as unchanged outside the software development 
groups. 

The knowledge and skills associated with each technology varied by role across a project. 
Software architects and designers, who were responsible for the creation of the architecture 
and the design of the subsystems, needed an in-depth knowledge of structural modeling, ob- 
ject-based design, and a working knowledge of Ada83. They needed the ability to look broadly 
at problems and identify potential patterns of commonality in the software architecture. 

Software developers, who were responsible for implementation of the designs, needed a 
working knowledge of structural modeling, an in-depth knowledge of Ada83, their develop- 
ment tools, and a high-level knowledge of DoD-STD-2167 requirements. 

Senior managers within the software development organization and at the program level had 
a limited knowledge of the engineering technologies used on the early structural modeling 
projects. Some mid-level managers and most low-level managers in the software develop- 
ment organization had a working knowledge of structural modeling, Ada83, their develop- 
ment tools, and DoD-STD-2167 requirements. All of those interviewed recommended 
expanding the awareness of mid and senior management both within the software organiza- 
tion and at the program level to help resolve staffing issues associated with the new technol- 
ogies. 

Early structural modeling projects reported that allocation of staff resources for each software 
development phase was based on previous data-driven simulators. Using these resource 
estimates, staff was added quickly during the early life-cycle phases. Several problems arose. 
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First, additional time was required to create and stabilize the software architecture. Second, 
adaptations to the software development processes to incorporate the new technologies 
were underway in parallel with the architecture definition. So, as changes were made in the 
processes or the architecture, more software developers were affected. With subsequent 
projects, resource allocations profiles were based on the growing experience using structural 
modeling. Projects tended to keep the number of software engineers low until the architec- 
ture was defined. 

5.5   Impact on Development Approach 
This section describes the effect of structural modeling on the project life cycle, methods and 
tools used, and project documentation. 

5.5.1    Life Cycle 
In the transition of the flight simulator projects to structural modeling (and related technolo- 
gies), their development milestones and schedules are viewed from two levels: at the project- 
wide level, including non-air vehicle parts of the simulator, and at the software-development 
level for the air vehicle itself (where structural modeling was applied). 

At the project-wide level, the traditional waterfall phases were used for software development 
(i.e., requirements analysis, preliminary design, detailed design, code and unit test, and inte- 
gration defined in sequential order). Development milestones were contractually defined to co- 
incide with the end of each phase. Program office reviews and documentation deliverables 
were tied to the completion of each phase. The estimated duration of each phase was based 
on previous data-driven flight simulator projects. Structural modeling has had little effect at the 
project-wide level. 

Structural modeling had an immediate effect at the software-development level. On the initial 
structural modeling projects, the air vehicle software teams found they needed more time 
early in the life-cycle phases than contractually defined, but less time in test and integration. 
The additional up-front time was required to develop the structural types and architecture. 
Milestone and documentation review deadlines were difficult to meet. They found they 
needed a more evolutionary or iterative life cycle as a result of 

• more software systems engineering, architecture definition, and prototyping to 
develop an effective architecture 

• continual aircraft changes 

• ongoing clarification of the required behavior of the simulator's end user 

Over the course of the interviews, several projects reported the need to modify the project- 
wide (and contractually defined) life cycle to explicitly support the iterative or evolutionary 
nature of air vehicle software development using structural modeling. 
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5.5.2    Methods and Tools 

All of those interviewed saw structural modeling as a process consisting of rules, procedures, 
and policies for designing and constructing systems. With the B-2 project, the structural 
types, code templates, and basic architecture for the air vehicle simulator were developed. All 
subsequent structural modeling projects reused the same structural type and basic architec- 
ture for the air vehicle software, including the same code templates for the structural types. 
Within the detailed design and code implementation of software components, each project 
applied its own processes, methods, and tools. 

A large variability of processes, methods, and tools was reported. For example, one project 
developed their own requirements traceability tool that linked the customer's high-level re- 
quirements to their derived requirements and design documentation. Others used no compa- 
rable tool. One project invested heavily in creating its own tools to automate their enhanced 
software development process. Tool support included requirements traceability, configuration 
management, interface definition management, and development library management. The 
project emphatically noted that they would recommend projects avoid writing their own tools 
and procure commercially available tools.13 

One project embarked on significantly reengineering its software development processes, 
methods, and tools in concert with structural modeling. For example, they 

• developed an interface database that tracked the subsystem where the interface is 
defined and used, and the data element involved. To facilitate the management of 
the interfaces, they created a module connection language. 

• created a configuration management capability to record problems, their analysis, 
changes identified, and tracking of the change process. 

• incorporated code complexity measures, based on McCabe complexity measures, 
into their development process, and enforced these measures through management 
involvement and code reviews [Bedford 91 ].14 They believed that by managing the 
complexity of their code they could improve further the understandability, 
maintainability, and reliability of their software. Key to their success was the 
pragmatic application of complexity limits, allowing for the use of complex code when 
appropriate. 

• expanded testing to include reliability measures. After researching the state 
of practice they adopted Musa's Basic Execution Time Model [Bedford 91]. 
The Musa Basic Execution Time Model provides estimates for a software 
unit's reliability (e.g., mean time to failure). 

This project was classified; the high-security requirements made vendor support for hardware and software 
difficult. If hardware or software vendor support was required, the vendor had to supply staff with the same 
security classification as project personnel. Also, hardware or software could not be returned to the vendor for 
detailed problem isolation and resolution. 

The McCabe Cyclomatic Complexity Measure indicates the relative complexity of a software unit based upon 
that unit's branching logic. 
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5.5.3    Documentation 
Since all the structural modeling projects were following DoD-STD-2167, the project docu- 
mentation, including that for the design, was required to conform to that standard. DoD-STD- 
2167 ties document requirements to the structure of a system, defining a system as a set of 
segments. Segments are decomposed into hardware computer configuration items (HWCIs) 
or software computer configuration items (CSCIs). CSCIs are decomposed into computer soft- 
ware components (CSCs). CSCs are optionally further decomposed into computer software 
units (CSUs). It is a project's responsibility to define a configuration item and its constituents 
in the hierarchy for their particular application. 

All early projects reported that they had struggled with an appropriate mapping of DoD-STD- 
2167 components to their high-level architecture. Several projects had originally defined a 
CSCI as a subsystem. With the common structure of the subsystems, this resulted in large 
amounts of duplicative and redundant information. The CSCI was redefined to include the 
entire system for the air vehicle simulation software. The subsystem design then became 
internal to the CSCI. This decision drastically reduced the amount of documentation with no 

loss of information. 

Customer requirements were typically supplied as English text of high-level operational capa- 
bilities. Senior engineers expanded and clarified the high-level customer requirements, pro- 
ducing a set of derived requirements that were captured in appropriate requirements 
documents for DoD-STD-2167. Most projects indicated that the high-level customer require- 
ments rarely changed, but the derived requirements would change, potentially substantially, 
through detailed design and coding. 

The resulting software architecture satisfied the derived requirements. The design documen- 
tation described the design process used, the resulting architecture, and constituent objects. 
English text and project-defined notations described the design. English text was used to 
indicate the scope of the simulation (what would or would not be simulated) and any assump- 
tions. Some projects also used the aircraft diagrams with annotations capturing the scope of 
the simulation. For the early projects, the ASC/YW engineering office was involved in defining 
the scope and level of detail for the design documentation. 

Most projects reported that design specifications used standard formats within their own 
project. Although there was no standard required across all Air Force flight simulator projects, 
many of the later projects have reused part of the design document from earlier projects. 
They reported that they reused the design document approach or outline, the description of 
the structural modeling approach, structural types and templates, and the description of the 
basic high-level architecture. 

Examples of design specification formats used across the projects included 

• textual descriptions of the objects in a subsystem and Ada83 package skeletons for 
subsystem controllers 
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• Ada83-PDL and math-model information added during detailed design (the amount 
of detail depended on the complexity of the math models) 

• functionally oriented flow charts for preliminary der;gn, and then a comb i of 
Booch diagrams and structure diagrams (to capture control median* for 
detailed designs 

Hughes/Link Division created its own notation [Bennett 92]. 

5.6   Managing the Learning Curve 
For all projects, the shift to structural modeling coincided with a shift to Ada83 and DoD-STD- 
2167. The implementation language for previous systems was typically Fortran with some C 
or JOVIAL. Most projects were not accustomed to the additional control and structure 
required of the new technologies. Early projects had little or no experience with Ada83, DoD- 
STD-2167, or object-based design. 

...for Software Developers 

The transition to the use of structural modeling and the associated technologies represented 
a significant change for most software developers. The ASC/YW engineering office shared 
the risk of flight simulators using significant new technology. For example, they supplied the 
early projects with consultants in structural modeling, Ada83, and object-based design. 

Most projects provided software developers with short courses in Ada83, structural modeling, 
and any new development tools. On-the-job training was the primary educational vehicle. 
Many later projects used architects and software developers from previous projects, thereby 
reducing their transition time. One project developed in-house training on effective styles for 
writing maintainable Ada83 programs [Glaize 91]. 

Software developers from the early structural modeling simulators reported a minimum of six 
months, and typically more, to feel comfortable with structural modeling. Once the architec- 
ture and design were established and a core of software developers understood how to apply 
structural modeling, all projects reported on the extreme ease of bringing new team members 
onto a project. Most reported only a few weeks before new developers were productive. They 
cited the standard definition and use of subsystem controllers, communication mechanisms, 
and coordination mechanisms as key contributors. 

...for Managers 

Most managers within the air vehicle software development group have made an effort to 
understand the technologies and its implications on their job. Most managers at the program 
level, however, have remained isolated from the technology. All projects reported that manag- 
ers at the program level received little or no training in either the technologies them- 
selves—structural modeling, Ada83, or object-based design—or the potential impact of the 
technologies on their jobs.15 Most of those interviewed reported the importance of all levels 
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of management throughout the project (system engineering, hardware engineering, and pro- 
gram level) having a greater understanding of structural modeling, particularly the importance 

• and benefits derived from an effective architecture 

• throughout the life cycle (including maintenance) of having a sound software 
architecture early in a project 

• of prototyping to ensure the viability of new concepts or mechanisms 

...for Bid, Proposal, and Acquisition Staff 

All of the projects followed traditional contract vehicles. Cost, size, and schedule were based 
on the architecture of past simulators. One organization reported that they are now modifying 
their bid proposal process based on their use of structural modeling. 

5.7   Summary 
The flight simulator projects had many new technologies to deal with at the same time. These 
were 

• Ada83 

• DoD-STD-2167 

• structural modeling 

• new development environment tools 

In the mid- to late 80s, all these technologies were immature. Actual use on large, industrial- 
strength applications was limited. Published experiences were limited, and there were few 
detailed user guidebooks or experienced consultants. The people and organizations using 
these technologies during this early stage had to forge new territory. 

Additional time is required for such problem and solution discovery. All of those interviewed 
noted the lack of sufficient training and experimentation as a problem when structural model- 
ing was first introduced. Management support and involvement can mitigate many of these 
risks associated with new technology. However, structural modeling and Ada83 were intro- 
duced as a technical solution within the software development group with limited involvement 
of program-level project management. This has slowed the time to mature structural model- 
ing and its spread through the flight simulator community. 

The more technology is integrated into all parts of a project's organizations (program level, 
software, hardware, systems), the greater the effectiveness and dissemination of the technol- 
ogy. Limited integration of structural modeling within the organization and project manage- 
ment was reported by those interviewed. Most raised this situation as a source of the many 

15-   The Air Force and the Software Engineering Institute are currently developing a course introducing structural 
modeling to acquisition managers. 
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issues they faced in trying to apply the technology within their respective organizations. Major 
examples of the low integration routinely cited included the following: 

• Milestones and resource allocations for preliminary design and critical design 
review were not adjusted to allow for increased analysis and design activities 
that a prescriptive architecture approach, such as structural modeling, 
requires. 

• Organizational structure did not align with the architecture. 

• A specific organizational element was not dedicated to own and control the 
architecture on a continuous basis. 

Overall, there was less attention to the organizational and people implications of the structural 
modeling technology than on the technical aspects. 
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6      Analysis and Conclusions 

1   Introduction 
structural modeling has provided an effective solution to the problem of software complexity 
as experienced by the aircrew trainer community. This has consistently been verified by the 
interviews we conducted and by the related contractor publications. Structural modeling's ef- 
fectiveness is further verified by its continued use on new trainers. 

In this chapter, we will offer some additional observations on 

• the limitations of this study 

• organizational and technical factors contributing to the effectiveness of 
structural modeling 

structural modeling's relationship to object-oriented development 

a possible product line of simulation software based on structural modeling 

6.2 Limitations of the Case Study 
The major limitation of this study is the lack of publicly available quantitative data. Although 
several projects reported the collection of quantitative data, those data were either unproc- 
essed or not publicly available. The evidence presented in this study is either the verbal or 
published experience (or opinion) of those interviewed, or is deduced from the software archi- 
tecture. 

6.3 Organizational Factors 
The use of structural modeling on the B-2 project represented a drastic departure from the pre- 
vious development method based on the waterfall model and the data-driven architecture. 
Two key factors strongly contributed to the success of the B-2 effort: 

• The U. S. Air Force had a strong vested interest in the success of the aircrew 
trainer project; in particular, they wanted an early success with Ada on a large 
project. The DoD had mandated the use of Ada, and the Ada Simulator 
Validation Project (ASVP) was specifically tasked to demonstrate viability of 
Ada in this domain [Lee 89]. 

• Structural modeling was a technology developed and driven from the 
technical engineering arm of the ASC/YW office. Most successful 
technologies have had a champion who sees the value of a technology and, 
through various ways, leads a group to actively use the technology. With 
larger groups, the original champion is augmented with surrogate champions 
that work with particular subgroups to carry the message. We see the same 
trend with structural modeling. Typically, a surrogate champion has emerged 
within each flight simulator project and has worked to "sell" the technology 
within their group or company. 
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Together these factors represented strong customer support for the introduction of then new 
technology. 

6.4   Architecture-Based Development 
During the early stages of the B-2 trainer development, structural modeling referred to the ar- 
chitecture; structural modeling was a process for extracting the mechanisms for coordination 
and communication from the user-required functionality, and exploiting the commonalities dis- 
covered within those mechanisms. Later in the B-2 development, as the implications of the ar- 
chitecture generated by structural modeling became clearer, a more general view of structural 
modeling emerged, that of a development process supported by the architecture. That later 
view of structural modeling is as follows: 

Structural modeling is the local cover name for the general engineering 
principles and technologies used: a prescriptive architecture, incremental 
development, and prototyping. The prescriptive architecture involves an object- 
based strategy, a small set of structural types, an explicit coordination model, 
and enforcement policies to ensure conformance to the architectural principles 
and guidelines. Incremental development is based on the use of prototypes to 
evolve the implementation in manageable deltas. Prototyping is used to 
discover the real system requirements, and then to validate those requirements 
and the resulting implementation.16 

Structural modeling views the software architecture as the backbone of the entire software life 
cycle, not just of the software development effort. The architecture not only addresses the ini- 
tial configuration of the software, but also provides a plan for dealing with the anticipated di- 
rections of change in the software. Further, it is the primary tool for communication among the 
system stakeholders. 

Architecture-based development involves domain analysis, iterative development, effective 
representation and communication, and enforced system conformance to the software archi- 
tecture. The relationship of structural modeling to each of these architecture-based develop- 
ment activities is described below: 

• Domain Analysis: Although formal domain analysis was not practiced when 
structural modeling was developed, structural modeling separates the 
domain commonalities from variabilities in the architecture (executive vs. 
state-calculating components). It does not, however, separate domain 
commonalities from variabilities across the state-calculating components. 

Iterative architecture development and evaluation of the architecture: The 
architecture was developed and its performance evaluated using the 
integration harness. 

16,   This description was written by Joe Batman in a private communication. 
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• Effective representation and communication of architecture to stakeholders: 
The software components correspond to the parts of the aircraft, and the 
physical connections in the plane are explicitly represented and exposed in 
the software. Hence the software architecture provides a common language 
for the designers, implementers, and maintainers of the software and the 
designers and maintainers of the aircraft. 

• Enforced system conformance to the selected architecture during system 
development and maintenance: Conformance to the software architecture 
generated by the structural model is enforced by (1) design and code reviews 
and (2) the use of software templates for the subsystem controllers and 
state-calculating components. 

6.5   Structural Modeling and Object-Oriented Development 

6.5.1    Overview of Object-Oriented Development 
Object-oriented development is an incremental, iterative process involving [Booch 91] 

• analysis of system requirements based on classes and objects derived from 
the problem domain 

• design based on an object-oriented decomposition 

• implementation based on cooperating objects and a hierarchy of classes 
related by inheritance 

Object-oriented development is based on the principles of [Booch 91] 

• abstraction: "the process of focusing on the essential characteristics of an 
object." 

• encapsulation: "the process of hiding all of the details of an object that do not 
contribute to its essential characteristics." 

• modularity: "the property of a system that has been decomposed into a set 
of cohesive and loosely coupled modules." 

• hierarchy: "the ranking or ordering of abstractions" 

• typing: "the enforcement of the class of an object..." 

Booch lists software component reuse, changeability, and reduction of developmental risk as 
the major benefits of object-oriented development, while performance and start-up costs are 
listed as the major associated risks. 
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6.5.2   Similarities 
There are strong similarities between structural modeling and object-oriented design tech- 
niques. In fact, the structural modeling effort started with a study to determine the benefits of 
using object-based concepts for aircrew trainer software [Lee 89]. Similarities include: 

• an incremental, iterative development process 

• the use of abstraction, encapsulation, modularity, and typing17 

• the use of hierarchy 

• the correspondence between classes and structural types 

• the lack of hard evidence of the effectiveness of the approach 18 

6.5.3   Differences 
The differences between structural modeling and current object-oriented development tech- 
niques are largely historical. The B-2 project was partly a proof of concept for the use of Ada83 
for large-scale simulation software projects. Ada83 supports object-based, but not object-ori- 
ented development. The difference between object-based and object oriented programming 
lies in the implementation programming language's direct support of inheritance. 

Although the air vehicle implementation is clearly object-based, an implementation using an 
object-oriented language such as C++ or Ada95 could define 

• abstract classes corresponding to the air vehicle structural types 

• corresponding concrete classes to capture further commonalities across 
groups of similar components (e.g., pumps) 

The change to an object-oriented language would 

• obviate the need for the software templates and the interface management 
(as reported by the B-2 project), as these would be language-supported 

• promote further reuse by the exploitation of functional commonalities across 
similar groups of state-calculating components 

17. Typing in the air vehicle is not based on classes and inheritance, but rather on the structural types. 

18-   From a lecture by Adele Goldberg at the Tenth European Conference on Object-Oriented Programming, in 
Linz, Austria in July, 1996. 
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6.6   Product Line of Air Vehicle Simulation Software 
A product line is a group of related systems that address a market niche or mission, and is built 
from a common set of assets, such as software components, personnel, project planning ex- 
pertise, performance analyses, processes, methods, tools, and exemplar systems [Withey 
96]. The potential benefits of a product-line approach include reuse of assets; reduction of risk, 
cost, and schedule predictability; and reduction in cost and time to market [Brownsword 96]. 

The software architecture forms the technical foundation for a product line [Brownsword 96]. 
Architecture-based development is "a product-line strategy where the earliest focus is on de- 
fining reusable design structures, together with technical practices governing their use as the 
basis for individual products."19 In fact, one contractor interviewed reported the successful use 
of structural modeling for designing for reuse. A product line of air vehicle simulators based on 
structural modeling seems a natural next step. The U. S. Air Force is investigating the feasi- 
bility of such a product line.20 

The nontechnical issues (including business, organizational, personnel, management prac- 
tice, cultural, and process issues) are as critical to the success of the product line as the tech- 
nical issues [Brownsword 96]. These issues are further complicated by the current Air Force 
acquisition process. ASC/YW, as the acquisition agent, has been involved with each structural 
modeling-based simulator project; however, each of those projects to date has also involved 
a separate program office, a development contractor, and frequently a different maintenance 
contractor. 

A product line approach to acquisition must address such questions as the following: 

• How can a product line be identified and managed at the Air Force level? 

• How can contractors for a product line be identified and managed? 

• Who owns the product-line assets? 

• How can those assets be effectively managed across multiple contractors 
and program offices? 

• Can the present acquisition process effectively deal with product lines? 

19- From a private correspondence from Larry Howard. 

20- From the Software Engineering Special Report Product Line Identification for ESC-Hanscom (CMU/SEI-95- 
SR-024) by Sholom Cohen, Seymour Friedman, Lorraine Martin, Nancy Solderitsch, and Robert Webster. 
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Certainly a different approach to software acquisition is required if the Air Force is to realize 
the benefits of a product-line approach. The Air Force Electronics Systems Center (ESC) re- 
port, Concept of Operations for the ESC Product Line Approach, [Cohen 96] contains 

• a proposed organization implementing a product-line approach to acquisition 

• descriptions of the roles and responsibilities of those organizations 

• key issues related to the transition to a product line approach to acquisition 
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Appendix A     The Executive 

A.1     Introduction 

The air vehicle simulator is typically implemented as multiple processes on multiple, distribut- 
ed processors. The executive binds the group of subsystems within a given process, handling 
the scheduling of those subsystems. The executive(s) are responsible for coordination of the 
multiple processes within the air vehicle implementation, external (to a system) communica- 
tion of state information, and the overall synchronization of a system with the rest of the sim- 
ulator.21 

The executive is partitioned by function, into software that supports periodic control, aperiodic 
control, external communication, and overall control and coordination. Periodic control is han- 
dled by the periodic sequencer, which is responsible for invoking the appropriate state calcu- 
lations in the proper order. Aperiodic control is handled by the event handler, which is 
responsible for determining and then executing the appropriate code in response to an event 
(e.g., a request from the IOS). External periodic communication is handled by the surrogate, 
which is responsible for hiding the details of external state information communications. The 
overall system is controlled by the time line synchronizer, which is responsible for synchroniz- 
ing the system with the rest of the simulator, and scheduling and invoking the periodic and 
aperiodic control software (see Figure 10). These four partitions of the executive are described 
in the following sections. 

Time Line Synchronizer 

Periodic 
Sequencer 

Event 
Handler 

Surrogate 

Figure 10: Executive Partitioning 

A.2    Periodic Sequencer 

The periodic sequencer is responsible for scheduling the periodic tasks within the air vehicle 
(Figure 11). It invokes the subsystem controllers according to a previously computed, fixed 
scheduling table, thereby ordering the execution of its associated subsystems. The periodic 
sequencer is also responsible for coordination of the accessing and updating of the export ar- 
eas of its associated subsystem controllers 

21. 
In this paper, we refer to an executive and its associated subsystems as a system. The air vehicle is typically 
implemented as a set of systems. 
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Update 

Import 

Periodic 
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Figure 11: Periodic Sequencer 

The operations of the periodic sequencer are import and update. Import invokes the import 
operations of the appropriate subsystem controllers, while update invokes the update opera- 

tions of the appropriate subsystem controllers. 

A.3    Event Handler 

The event handler is responsible for event processing within the air vehicle (Figure 12). It de- 
termines which subsystem controllers should receive an event, and invokes the appropriate 
subsystem controller to handle that event. Events, primarily generated by the IOS, are exter- 
nally placed in an event queue, which is later processed by the event handler. Aperiodic 
events are relatively rare; hence the event handler eliminates the need for polling in the sub- 
systems. 

Event 
Handler 

-1 

Get Outbound Message 
1 

Constituent Event 
1 

Configure 
1 

Send 
_i 

Figure 12: Event Handler 

The operations of the event handler are get_outbound_message, constituent_event, config- 
ure, and send. Get_outbound_message retrieves, from the event queue, a message bound 
for outside of the system; constituent_event routes an event to the appropriate subsystem 
controller; configure invokes the appropriate subsystem controllers' configure operation; and 
send, called by subsystem controllers, places an event in the event queue. 

A.4    Surrogate 

The surrogate is responsible for the periodic exchange of state information between systems 
(Figure 13). Surrogates function in pairs. For each external system that a local system com- 
municates with (i.e., exchanges state information with), there is a surrogate on the local sys- 
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tern and an associated surrogate on the external system. Surrogates hide the details of the 
connections between systems, such as data representation differences between processors. 

Send 

Receive 
Surrogate 

Import 

Export 

Figure 13: Surrogate 

The operations of the surrogate are send, receive, import, and export. Send transfers state 
information from the surrogate to its paired surrogate in the receiving system; receive accepts 
state information from the paired surrogate in the sending system; export makes the received 
external state information available to the system; and import instructs the surrogate to pre- 
pare the state information to be sent.22 

A.5    Timeline Synchronizer 

The timeline synchronizer is responsible for scheduling and invoking the periodic sequencer, 
the event handler, and the surrogate. It schedules based on the fixed period of time that its 
system is to execute, as shown in Figure 14. 

Synchronization Periodic 
Communication 

Periodic 
Operations 

Aperiodic 
Operations 

Slack 
Time 

Time ► f 
n ln+l 

Figure 14: System Time Period 

The timeline synchronizer is also responsible for maintaining the system's view of the simula- 
tor's overall state. The timeline synchronizer has no visible operations. 

The timeline synchronizer coordinates the multiple systems within the air vehicle. The system 
that executes at the highest rate assumes the role of the master timeline synchronizer, and 
synchronizes the execution of the multiple systems using some inter-process synchronization 
mechanism, such as semaphores [Abowd 94]. 

The import and export operations are from the point of view of the surrogate. Hence, the surrogate exports its 
received state information to the rest of the surrogate's system. 
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Appendix B     Control Flow 
The flow of control in the air vehicle is for the most part top down.23 For example, the timeline 
synchronizer calls the periodic sequencer as needed, but the periodic sequencer does not call 
the timeline sequencer. Figure15 illustrates the flow of control during a periodic update of the 
air vehicle system, where an arrow from box A to box B indicates that the code associated with 
box A calls the code associated with box B. The box associated with the periodic sequencer 
is shaded to emphasize the periodic sequencer's role in periodic processing. Figure 16 simi- 
larly illustrates the flow of control in response to an event. 

Figures 15 and 16 also illustrate a portion of the T39A air vehicle architecture [ASCYW 94].24 

The boxes labeled timeline synchronizer, periodic sequencer, and event handler all represent 
specific instances of their respective structural types and are tailored for the specific processor 
on which the represented system would execute. The hydraulic power subsystem controller is 
an instance of the subsystem controller structural type that coordinates the execution of the 
state-calculating components for the hydraulic pump, reservoir, and control relay. Other com- 
ponents of that subsystem, including a shut-off value and a fluid filter are not shown. The hy- 
draulic panel subsystem similarly simulates the operation of the hydraulic system's displays, 
indicators, and controls. 

The exception is the event handler's send operation, whereby a subsystem controller places an event on the 
event queue. 

24-   The T39A is a jet aircraft used for training by the U. S. Air Force. 
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